91 research outputs found

    Maximum Power Game as a Physical and Social Extension of Classical Games

    Get PDF
    We consider an electric circuit in which the players participate as resistors and adjust their resistance in pursuit of individual maximum power. The maximum power game(MPG) becomes very complicated in a circuit which is indecomposable into serial/parallel components, yielding a nontrivial power distribution at equilibrium. Depending on the circuit topology, MPG covers a wide range of phenomena: from a social dilemma in which the whole group loses to a well-coordinated situation in which the individual pursuit of power promotes the collective outcomes. We also investigate a situation where each player in the circuit has an intrinsic heat waste. Interestingly, it is this individual inefficiency which can keep them from the collective failure in power generation. When coping with an efficient opponent with small intrinsic resistance, a rather inefficient player gets more power than efficient one. A circuit with multiple voltage inputs forms the network-based maximum power game. One of our major interests is to figure out, in what kind of the networks the pursuit for private power leads to greater total power. It turns out that the circuits with the scale-free structure is one of the good candidates which generates as much power as close to the possible maximum total.ope

    Observation of a One-Dimensional Spin-Orbit Gap in a Quantum Wire

    Full text link
    Understanding the flow of spins in magnetic layered structures has enabled an increase in data storage density in hard drives over the past decade of more than two orders of magnitude1. Following this remarkable success, the field of 'spintronics' or spin-based electronics is moving beyond effects based on local spin polarisation and is turning its attention to spin-orbit interaction (SOI) effects, which hold promise for the production, detection and manipulation of spin currents, allowing coherent transmission of information within a device. While SOI-induced spin transport effects have been observed in two- and three-dimensional samples, these have been subtle and elusive, often detected only indirectly in electrical transport or else with more sophisticated techniques. Here we present the first observation of a predicted 'spin-orbit gap' in a one-dimensional sample, where counter-propagating spins, constituting a spin current, are accompanied by a clear signal in the easily-measured linear conductance of the system.Comment: 10 pages, 5 figures, supplementary informatio

    Computers from plants we never made. Speculations

    Full text link
    We discuss possible designs and prototypes of computing systems that could be based on morphological development of roots, interaction of roots, and analog electrical computation with plants, and plant-derived electronic components. In morphological plant processors data are represented by initial configuration of roots and configurations of sources of attractants and repellents; results of computation are represented by topology of the roots' network. Computation is implemented by the roots following gradients of attractants and repellents, as well as interacting with each other. Problems solvable by plant roots, in principle, include shortest-path, minimum spanning tree, Voronoi diagram, α\alpha-shapes, convex subdivision of concave polygons. Electrical properties of plants can be modified by loading the plants with functional nanoparticles or coating parts of plants of conductive polymers. Thus, we are in position to make living variable resistors, capacitors, operational amplifiers, multipliers, potentiometers and fixed-function generators. The electrically modified plants can implement summation, integration with respect to time, inversion, multiplication, exponentiation, logarithm, division. Mathematical and engineering problems to be solved can be represented in plant root networks of resistive or reaction elements. Developments in plant-based computing architectures will trigger emergence of a unique community of biologists, electronic engineering and computer scientists working together to produce living electronic devices which future green computers will be made of.Comment: The chapter will be published in "Inspired by Nature. Computing inspired by physics, chemistry and biology. Essays presented to Julian Miller on the occasion of his 60th birthday", Editors: Susan Stepney and Andrew Adamatzky (Springer, 2017

    Memory Impedance in TiO2 based Metal-Insulator-Metal Devices

    Get PDF
    Large attention has recently been given to a novel technology named memristor, for having the potential of becoming the new electronic device standard. Yet, its manifestation as the fourth missing element is rather controversial among scientists. Here we demonstrate that TiO2-based metal-insulator-metal devices are more than just a memory-resistor. They possess resistive, capacitive and inductive components that can concurrently be programmed; essentially exhibiting a convolution of memristive, memcapacitive and meminductive effects. We show how non-zero crossing current-voltage hysteresis loops can appear and we experimentally demonstrate their frequency response as memcapacitive and meminductive effects become dominan

    Comment on 'If it's pinched it's a memristor'

    No full text

    Spin-photovoltaic effect in quantum wires due to intersubband transitions

    Get PDF
    We consider the current induced in a quantum wire by external electromagnetic radiation. The photocurrent is caused by the interplay of spin-orbit interaction (Rashba and Dresselhaus terms) and an external in-plane magnetic field. We calculate this current using a Wigner functions approach, taking into account radiation-induced transitions between transverse subbands. The magnitude and the direction of the current depends on the Dresselhaus and Rashba constants, strength of magnetic field, radiation frequency, and intensity. The current can be controlled by changing some of these parameters
    corecore